Model-Based Integrated High Penetration Renewables Planning and Control Analysis

October 22, 2015

State of New Jersey Board of Public Utilities

Steve Steffel, PEPCO Amrita Acharya-Menon, PEPCO Jason Bank, EDD

SUNRISE Department of Energy Grant

- Model-Based Integrated High Penetration Renewables Planning and Control Analysis
- Award # DE-EE0006328
- Contributors
 - Pepco Holdings, Inc
 - Electrical Distribution Design, Inc
 - Clean Power Research
 - Center for Energy, Economic & Environmental Policy (CEEEP), Rutgers University
 - New Jersey Board of Public Utilities

Acknowledgement: This material is based upon work supported by the Department of Energy Award Number DE-OE0006328.

Disclosure: 'This report was prepared as an account of work sponsored by an agency of the United Sates Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade, name trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Introduction

- The proposal was put together to address several identified industry needs :
 - Many customers with PV, tend to export during times of low native load and can raise voltage at their premise, sometimes over 126V on a 120V base, and now need "Voltage Headroom"
 - High penetration feeders and feeder sections are starting to exhibit violations such as high voltage. There are a number of optimization and control setting changes that could provide the means to increase hosting capacity at a reasonable cost. These needed to be studied and the cost/benefit of using these approaches published
 - Real time optimized control of feeder equipment can impact Hosting Capacity, so one goal was to test dynamically adjusting Voltage Regulator and Inverter settings to see the impact on Hosting Capacity
 - A voltage drop/rise tool is needed for reviewing voltage rise between the feeder and meter, especially when multiple PV systems are attached to a single line transformer.

Hosting Capacity Study Overview

- Twenty distribution feeders selected from PEPCO's service territory
- A hosting capacity study was performed on each feeder to determine how much additional PV it could support in its current configuration
- Several improvements were performed on these circuits. After each one the hosting capacity of the circuit was reevaluated in order to determine the impact on the amount of PV that could be hosted
- A cost benefit analysis was performed in order to evaluate the expected costs of each feeder improvement and how each one was able to increase the hosting capacity of each feeder
- It is hoped that these results can be generalized by PEPCO and other distribution utilities in order to understand how they can improve the hosting capacity of their feeders and facilitate the deployment of more PV generation at the distribution level

Hosting Capacity Analysis

- Place new PV sites at randomly selected customers on the circuit in order to satisfy the PV Penetration level under test.
- Once the PV is placed the circuit is tested for violations such as over/under voltage and overloads, flicker sensitivity, reverse flows (see table on next slide for full list of violations tested).
- This random placement process is repeated a number of times for each penetration level in order to build a stochastic set of results.
- Steps to the next PV Penetration Level and repeats the random placement and violation testing process
- The user is able to specify PV penetration levels to test, the size of the placed PV sites, the violations to check for and the number of placement iterations.

Hosting Capacity Violations

Violation Variable	Comparison	Threshold	Units	Comment
Customer Level Overvoltage (Steady-State)	>	123.5	Volts	Secondary
Customer Level Undervoltage (Steady-State)	<	116.5	Volts	Secondary
Line Transformer Overvoltage (Steady-State)	>	123.5	Volts	Primary
Line Transformer Undervoltage (Steady-State)	<	116.5	Volts	Primary
Line Transformer Temporary Overvoltage (During PV output Change)	>	126	Volts	Primary
Line Transformer Temporary Undervoltage (During PV output Change)	<	114	Volts	Primary
Generator POI Overvoltage (Steady-State)	>	126	Volts	at POI
Generator POI Undervoltage (Steady-State)	<	114	Volts	at POI
Generator POI Temporary Overvoltage (During PV output Change)	>	126	Volts	at POI
Generator POI Temporary Undervoltage (During PV output Change)	<	114	Volts	at POI
Generator POI Flicker Sensitivity (Irritability - PV Step Up)	>	2	Volts	at POI
Generator POI Flicker Sensitivity (Irritability - PV Step Down)	>	2	Volts	at POI
Voltage Change at Voltage Controller (During PV output Change)	>	1/2 BW	Volts	at Vreg or Cap
Voltage Regulator Reverse Flow	<	-0.1	kW	Reverse Power
Protective Device Reverse Flow	<	-0.1	kW	Reverse Power
Feeder Reverse Flow	<	-0.1	kW	Reverse Power
Feeder Current Imbalance	>	20	%	
Component Voltage Imbalance	>	3	%	
Component Overload	>	100	%	

PV output step change used for analysis: 100% - 20% on all PV sites (% of clear sky output) Analysis performed at time point with maximum generation / load ratio

PV Penetration Limits

- Each point corresponds to one random placement of PV satisfying the PV Penetration on the Horizontal axis
- Vertical position of each point is the highest observed violation value for that placement of PV
- If the point falls above the violation threshold it represents a placement of PV which results in an issue on the circuit
- The *Strict Penetration Limit* occurs at the point below which all tested random placements are under the violation threshold
- The *Maximum Penetration Limit* occurs at the point past which all tested random placements are above the violation threshold

Feeder Improvements

- Base: circuit as-is (existing PV included)
- **Balanced**: phase balancing performed on the base case
- Capacitor Design: moves existing or places additional capacitors in order to flatten feeder voltage profile and optimize the capacitor placement
- Reduced Voltage Settings: voltage regulation and LTC set-points lowered as far as possible while still maintaining acceptable customer voltages at peak load.
- Dynamic Voltage Control: voltage regulation and LTC set-points are adjusted over time to be as low as possible while still maintaining acceptable customer voltages at each time point (i.e. using FSMA tool to determine optimal Vreg settings over time).
- Fixed PF: power factor of randomly placed inverters are set to a fixed, absorbing power factor of 0.98. Existing PV sites are unmodified (i.e. all new PV on feeder required to operate at 0.98 absorbing).
- Battery Storage: battery storage in a daily charge/discharge schedule is added to circuit in order to add effective load at peak PV production times.

Example Feeder (Study Feeder 16)

- Contains newer 34.5 kV primary out of sub and on most of backbone, also has several areas of older 4.15 kV primary connected through step transformers
- One of the longer feeders in the study, three voltage regulation zones (plus sub LTC), four voltage controlled switched cap banks, one fixed cap bank
- Poor voltage regulation on the 4.15 kV sections and phase imbalances limit the PV penetration of base circuit to about 6%, limited by customer steady-state high voltages

Study Feeder 16 Summary						
Feeder Type	Res					
Primary Voltage	34.5 kV Y-G and 4.15 kV Y-G					
Feeder Length (total circuit miles)	64 mi					
Distance from Sub to Furthest Load	12.8 mi					
Peak Load (SCADA)	8.1 MW					
Minimum Daytime Load (SCADA)	2.4 MW					
Number of Distribution Transformers	331					
Connected KVA (total xfrmr rating)	65 MVA					
Number of Capacitor Banks	5					
Total Capacitor Bank Rating	7.8 MVAR					
Number of Voltage Regulation Zones	3					
Number of Existing PV Sites	2					
Total Existing PV Generation	15 kW					
Existing PV Penetration	< 1%					

Example Feeder (Study Feeder 16)

Example Feeder (Study Feeder 16)

	Study Feeder 16 Hosting Capacity Violations Summary													
	Base	Circuit	Phase B	alanced	Phase Ba Reduced Sett	lanced & Voltage ings	Phase B Reduced Settings P	alanced, Voltage & Fixed F	Phase Ba Dynamic Con	lanced & Voltage trol	Phase B Dynamic Control 8	alanced, c Voltage c Fixed PF	Phase B Reduced Settings, & Battery	alanced, Voltage Fixed PF Storage
Violation Type	Strict Pen Limit	Max Pen Limit	Strict Pen Limit	Max Pen Limit	Strict Pen Limit	Max Pen Limit	Strict Pen Limit	Max Pen Limit	Strict Pen Limit	Max Pen Limit	Strict Pen Limit	Max Pen Limit	Strict Pen Limit	Max Pen Limit
Line Xfrm Steady-State Overvoltage Line Xfrm Steady-State	25.9	41.9	35.9	41.9	40.0	47.9	60.0	75.8	119.7	135.7	171.9	217.8	85.8	111.9
Undervoltage Customer Steady-State Overvoltage	5.9	12.0	5.9	14.0	3.9	14.0	17.9	30.0	78.0	83.8	113.7	135.7	35.9	52.0
Customer Steady-State Undervoltage									269.7					
Voltage Regulator Reverse Flow	2.0	12.0	2.0	8.0	2.0	10.0	2.0	10.0	2.0	8.0	2.0	10.0	2.0	10.0
Feeder Reverse Flow	22.0	24.0	25.9	28.0	25.9	28.0	25.9	28.0	25.9	28.0	25.9	28.0	30.0	31.9
Protective Device Reverse Flow	3.9	12.0	2.0	14.0	2.0	14.0	2.0	12.0	2.0	12.0	2.0	12.0	3.9	14.0
Gen POI Steady-State	70.0	87.7	78.0	97.7	70.0	91.9	105.8	153.8	153.8	179.5	229.4	259.5	14.0	179.5
Gen POI Steady-State Undervoltage Gen POI Step Change Temp Overvoltage Gen POI Step Change Temp Undervoltage Generator POI Flicker Sensitivity (Irritability - Step Change) Line Xfrm Temp Overvoltage Gen Step Change Line Xfrm Temp Undervoltage Gen Step Change Controller Temp % Bandwidth	53.9	61.9	47.9	57.9	47.9	52.0	63.9	73.9	47.9	52.0	63.9	75.8	57.9	75.8
Change Imbalance of Any Bus	199.4	239.6	265.3	155.7	293.7	155.7	243.6	255.0	269.7	155.7	209.9	235.0	297.6	201.5
(CustVImbal%Max) Overload	85.8	90.0	85.8	91.9	85.8	91.9	85.8	91.9	85.8	91.9	78.0	83.8	85.8	<u>91.</u> 9
ovement Cost (k\$)	()	5	;	-	7		7	8	5	8	5	45	51
Upgrade Cost (k\$)	6	0	6	0	6	0	6	50	8	2	8	2	6	0

** The capacitor design improvement was not implemented on this feeder as the existing capacitor placement was near optimal

Penetration Limit Increase Realized by Each Feeder Improvement

Study	Base Strict	Pha Balan	se cing	Capacitor Redesign		Capacitor Reduced Redesign Voltage		Dynamic Voltage Control		Fixed PF (with Reduced Voltage)		Fixed PF (with Dynamic Voltage)		Battery Storage	
reeuer	(%)	Strict Limit Inc. (%)	Cost (k\$)	Strict Limit Inc. (%)	Cost (k\$)	Strict Limit Inc. (%)	Cost (k\$)	Strict Limit Inc. (%)	Cost (k\$)	Strict Limit Inc. (%)	Cost (k\$)	Strict Limit Inc. (%)	Cost (k\$)	Strict Limit Inc. (%)	Cost (k\$)
1	29.7	0	1.5			64	1.5	138	60	75	0	0	0	0	184
2	27.9	0	2.5	0	10.0	16	0.5	86	20	92	0	83	0	22	283
3	53.6	0	2.0			50	2.0	211	80	10	0	-2	0	0	220
4	34.9	-6	2.0			20	0.5	106	20	4	0	0	0	0	186
5	43.7	0	2.0	0	25.5	18	2.0	79	80	132	0	71	0	0	239
6	38.9	6	1.5	0	57.0	0	0.5	119	20	76	0	56	0	34	358
7	36.9	8	4.0			22	3.0	26	120	26	0	16	0	4	289
8	23.8	0	1.5			38	0.5	73	20	68	0	20	0	12	318
9	1.9	2	1.0			24	0.5	108	20	24	0	49	0	9	270
10	12.8	12	7.5			24	0.5	38	20	4	0	0	0	14	132
11	39	0	2.5	0	28.5	0	1.5	14	80	18	0	8	0	2	275
12	8	0	5.5	0	35.5	0	3.5	0	140	4	0	2	0	0	463
13	2.9	0	3.0			28	2.0	42	80	56	0	60	0	18	298
14	15.9	-1	5.5	0	25.5	3	2.0	1	140	-2	0	0	0		
15	20	2	1.5			18	0.5	46	20	6	0	8	0	20	442
16	5.9	0	5.0			-2	2.0	42	80	14	0	16	0	32	444
17	17	0	2.0	0	28.5	24	0.5	70	20	64	0	4	0	22	558
18	42.9	2	5.0			40	0.5	122	20	90	0	170	0	24	356
19	25.9	2	4.5			24	1.5	30	60	16	0	10	0	6	327
20	44.9	0	2.0			0	0.5	82	20	140	0	-28	0	30	442
Average	26.3	1	3.1	0	30.1	21	1	72	56	46	0	27	0	13	320

Protection and Coordination

- Protection and coordination studies were performed on feeders 6 and 13
- These studies were performed at the *maximum* penetration limit for the battery storage cases, representing worst case scenarios for inverter fault contributions (maximum amount of allowable PV and inverter battery storage)
- Even at these worst case scenarios the inverter fault current was not enough to interfere with existing protection. From these results it can be expected that protection issues will not limit PV deployment lower than the penetration levels determined in the hosting capacity studies.

	3PhZ0FA (A)	3PhZ0FA (B)	3PhZ0FA (C)	1PhZ0FA (A)	1PhZ0FA (B)	1PhZ0FA (C)
PV off	9327	9327	9327	9159	9159	9159
PV on	9431	9461	9446	9265	9294	9277
Change	104	134	119	106	135	118
%	1.1	1.4	1.3	1.2	1.5	1.3

Study Feeder 6 - Maximum Fault Currents

Secondary Design Tool

- Standalone application that utilizes a simplified version of EDD's DEW modelling software package. Designed to be used by engineers, technicians, or PV contractors to identify any violations created by attaching PV systems to the secondary/services fed by a single phase distribution transformer.
- The user can modify components in the model such as transformer size, conductor size and length, and PV size to mitigate violations created by adding PV sites at selected locations
- The application is designed to check for the following types of violations:
 - High Voltage customer voltages greater than 126 volts
 - Low Voltage customer voltages lower than 114 volts
 - Overload current flow (amps) in excess of component rating for conductors and transformers

Forecast, Schedule, Monitor, Adjust (FSMA) Tool

- Application within EDD's DEW modelling software package, it is designed to be used for operations monitoring using real-time measurements
- Also can be used for detailed planning analysis using time step simulation that will allow planners to evaluate control device interactions with PV and load changes using historical load measurements, historical PV output data from CPR and NREL, and historical measurements from SCADA
- Inputs all of these measurement sources, attaches the measurement values to a distribution feeder model and to determines optimal voltage regulator, capacitor bank and inverter controller settings in order to maximize a set of user defined objectives while minimizing control costs
- Uses a tabular search to determine the optimal control positions for capacitors, voltage regulating transformers, and solar panel supplying inverters with user-configurable weighting factors

🖳 CVR Setup		
Controllable Components:	Output Stepping:]
LTC	VReg Step Size (120V Base):	1.0 📫
 ✓ TORW - Solar ✓ 326 	Max VReg Step Imbalance:	2 ÷
 ✓ 475kW - Solar ✓ 855kW - Solar 	Check Second	dary CustV
☑ 370 ☑ 20kW - Salar	Max Cust V (120V Base):	126.0 🛨
☑ 10kW - Solar	Min Cust V (120V Base):	114.0 🛨
 ✓ 324 ✓ 8kW - Solar 	Min Avail Capacity (Amps):	0 ÷
✓ 10kW - Solar ✓ 10kW - Solar	Max Flicker (120V Base):	2.0 ÷
✓ 10kW - Solar	Min Volt Viol Improvement (120V Base):	0.5 ÷
☑ 190kW - solar ☑ 285kW - Solar	Min Overload Improvement (Amps):	3.0 🔹
✓ 11.1kW - Solar ✓ 14.5kW - Solar	Min Efficiency Improvement (kW):	0.6 🗧
☑ B4877	Min Load Reduction (kW):	10.0 🗦
P +202	Min Flicker Reduction (120V Base):	0.2 ÷
	Min PV To Attempt P.F. Change (kW):	75.0 🕂
	Capacitor Step Cost:	1.0 ÷
	VReg Step Cost:	0.2 ÷
	Cost Per Curtailed PV kW:	0.04 ÷
	Ignore Flicker Constraints	
Freeze Controllers After Running		
E Prese controllere Anter Admining	or	Court 1
	UK	Cancel

FSMA Demonstration

- Study Feeder 11 Industrial/Residential circuit with 1.9 MW of PV
- Input real time SCADA data and voltage readings to program (FSMA), implement forecasted values in the field
- Solar output forecast using Clean Power Research data
- Testing was done on relatively sunny days with moderate temperatures

FSMA Demonstration Results

Power Flow

Variable	3:00 PM	4:00 PM	5:00 PM	6:00 PM	7:00 PM	8:00 PM
SCADA	856.5	1117.0	1358.1	1748.6	1805.8	1761.1
Forecasted	864.8	1110.1	1511.6	1741.7	1751.9	1677.3
Margin	0.97%	0.62%	11.30%	0.39%	2.99%	4.75%

FSMA Demonstration Results

Variable	3:00 PM	4:00 PM	5:00 PM
Cust V (A)	124.5	124.2	123.8
Cust V (B)	120.8	120.6	120.2
Cust V (C)	123.8	123.0	122.0
Cust V (A) Actual	123	123	123
Cust V (B) Actual	124	122	121
Cust V (C) Actual	124	122	122
Cust V (A) Margin	1.20%	0.99%	0.62%
Cust V (B) Margin	2.57%	1.18%	0.69%
Cust V (C) Margin	0.13%	0.78%	0.03%

Strict Penetration Limit Increase for Each Feeder

		Rase Case	2	Max Pe	netration	w/ Ungrades
Feeder	PV (%)	PV (MW)	- Cost (k\$)	PV(%)	PV(MW)	Cost(k\$)
1	29.7	1.0	0.0	167.9	5.9	60.2
2	29.7	1.5	0.0	197.1	10.4	32.5
3	53.6	2.2	67.9	264.7	10.9	149.3
4	34.9	1.2	0.0	134.5	4.8	22.0
5	43.7	2.0	67.3	193.7	8.7	96.8
6	38.9	2.6	0.0	219.6	14.5	78.5
7	36.9	1.9	0.0	92.7	4.7	131.4
8	23.8	1.4	0.0	129.2	7.6	2.0
9	1.9	0.1	0.0	161.3	8.1	21.0
10	12.8	0.3	0.0	62.9	1.6	27.5
11	39.0	2.0	37.2	61.0	3.1	178.3
12	8.0	0.7	37.2	11.9	1.0	118.7
13	2.9	0.2	0.0	104.9	5.8	150.2
14	15.9	1.5	0.0	18.0	1.7	33.0
15	20.0	1.6	0.0	76.0	6.2	21.5
16	5.9	0.5	59.7	63.9	5.2	167.1
17	17.0	2.0	0.0	104.9	12.1	31.0
18	42.9	2.8	0.0	336.7	22.2	25.0
19	25.9	1.6	74.0	67.8	4.1	80.0
20	44.9	2.7	0.0	184.6	11.0	2.5
AVERAGE	26.4	1.5	17.2	132.7	7.5	71.4

- Minimum

🕂 Maximum

Notes: The above does not include battery deployment The above feeders represent different voltage levels.

Conclusions

- Every feeder is unique and can have a different hosting capacity
- There are a number of methods to leverage existing equipment to increase Hosting Capacity and provide Voltage Head Room
- Phase Balancing shows little direct impact, but it is important to keep the circuit balanced as PV penetration increases
- Dynamic Volt/VAR will take new controls, communications and central logic to run. Some utilities have already implemented Volt/VAR control, may need some new logic
- Smart Inverters have promise but modeling and operation at high penetration levels still poses some unknowns
- Even after dealing with Voltage issues, reverse power on V. Regs., on Power transformers, Distribution Automation Schemes, loading and protection issues will make analysis more complex
- For higher penetration levels on the distribution system, it will be important to keep an eye on the Transmission system